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Tumor/endothelial cell cross-talk plays a pivotal role in the growth, neovascularization and metastatic
dissemination of human cancer. Recent observations have shown that the teleost zebrafish (Danio rerio)
may represent a powerful experimental platform in cancer research. Various tumor models have been
established in zebrafish adults, juveniles, and embryos and novel genetic tools and high resolution in vivo
imaging techniques have been exploited. In particular, grafting of mammalian tumor cells in zebrafish embryo
bodymay simulate early stages of tumor development, neovascularization, and local invasionwhereas the injec-
tion of cancer cells in the bloodstream of zebrafish embryo may allow the study of metastatic homing and colo-
nization. This review focuses on the recent advances in tumor xenotransplantation in zebrafish embryo for the in
vivo study of the cancer neovascularization, invasion and metastatic processes. This article is part of a Special
Issue entitled: Animal Models of Disease.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The teleost zebrafish (Danio rerio) has exceptional utility as a
human disease model system and represents a promising alternative
platform in cancer research [1].

As other teleost fishes, zebrafish spontaneously develops a wide
variety of benign and malignant tumors in virtually all organs, with
characteristics that resemble those of human tumors [2]. Also, several
approaches havebeen attempted to induce cancer in zebrafish (reviewed
in [3]). In a first set of experiments tumor formation was induced by
exposure to chemical carcinogens (e.g. diethylnitrosamine, N-methyl-N′
nitro-N-nitrosoguanidine, and 7,12-dimethylbenz[a]anthracene). Adult
fishes developed a wide range of tumors in different organs including
liver, gill, gastrointestinal tract, pancreas/kidney, testis, muscle, skin
and vasculature [2,4,5]. Next, forward genetic screening, target-selected
inactivation of tumor suppressor genes, and tissue-specific expression
of mammalian oncogenes were used to investigate the molecular bases
and biological features of different tumor types in zebrafish adults
[6–10]. For instance, injection of the rag2-KRASG12D construct into
one-cell-stage embryos represents a model of pedriatic rhabdomyosar-
coma in zebrafish [8]. This model was recently used to identify tumor
propagating cells and to define the functional consequences of tumor
cell heterogeneity of this type cancer in zebrafish adults [11]. Finally,
permanent gene inactivation by “targeting-induced local lesions in
fibroblast growth factor 2; hpf,
orpholino oligonucleotide; SIV,
factor; ZFYM, zebrafish yolk
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genes” (TILLING) [12] and zinc-finger nuclease [13] approaches have
been utilized to assess the impact of target genes on different aspects
of tumor biology in adult zebrafish.

When compared to these tumor models, direct transplantation of
tumor cells in zebrafish may represent a useful approach to investigate
the role of host microenvironment in the early phases of tumor growth,
including angiogenesis, local invasion and metastatic spreading. To this
aim, several studies have shown the feasibility of injecting mammalian
tumor cells in zebrafish adults, juveniles and embryos. Differences in
body size and transparency, immune system functionality, genetic
tools, drug delivery and bioavailability represent only some of the
major differences that should be considered when investigating tumor
grafting in zebrafish at different stages of development [14,15].

This review describes the results obtained with recently developed
tumor graft models in zebrafish, with particular emphasis to tumor
xenotransplantation models in zebrafish embryos for the in vivo study
of cancer neovascularization, invasion and metastatic processes.

2. Tumor transplantation in zebrafish adults and juveniles

Transplantable tumor cell lines have been generated in clonal
zebrafish and maintained for several passages in syngeneic and isoge-
neic adults [16]. Microarray analysis has shown that gene expression
signatures are conserved in fish tumors when compared to their
human counterpart [1]. Also, limiting dilution cell transplantation
experiments in irradiated zebrafish adults have provided valuable
information about cancer stem cell self-renewal in both leukemias
and solid tumors (reviewed in [17]). Relevant to tumor studies in
zebrafish adults, a transparent casper zebrafish line that lacks all types
of pigments has been generated, allowing the rapid identification
of transplanted tumor cells [18]. Crossing of the casper mutant with
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transgenic lines that label vasculature or internal organs with fluores-
cent tags or harbor transgenic-induced tumors represents useful
approaches to study tumor–host interactions in zebrafish adults with
different optical platforms [19–22].

Noninvasive imaging in non-transparent zebrafish adults has been
also attempted. Ultrasound biomicroscopy has been used to follow the
growth of liver tumors, their vascularity, and response to treatment
[23]. Other imaging techniques, including microcomputerized axial
tomography, micromagnetic resonance imaging, and optical projection
tomography can be applied in zebrafish and will help to study tumor
grafts in adult zebrafish [24].

Due to the smaller size, zebrafish juveniles may represent an inter-
esting alternative to adult animals to investigate tumor cell behavior
by high resolution in vivo imaging techniques. To this aim, human
cancer cells have been successfully transplanted in the peritoneal cavity
of 30 day-old casper zebrafishmutants [25]. Since juvenile zebrafish has
a functional immune system, dexamethasone administration was
required to prevent the rejection of the tumor cell engraftment. This
has allowed the study of the dynamics of microtumor formation and
neovascularization, leading to a detailed description of the interaction
among fluorescent tumor cells and the green fluorescent protein (GFP)-
labeled vasculature of the host by three-dimensional reconstruction of
confocal microscopy images. The results of these studies have shown
that tumor cells secreting human vascular endothelial growth factor
(VEGF) promote fish vessel remodeling and angiogenesis and that the
human metastatic gene RhoC drives the initial steps of the metastatic
process.

When compared to zebrafish embryos (see below), the impact of
the tumor graft on the mature vasculature of juvenile fishes may reca-
pitulate more closely the events that occur during tumor angiogenesis
in adult animals and cancer patients. Indeed, developing vessels of
zebrafish embryos may respond differently to tumor grafts compared
to the fully developed vasculature of juvenile animals [26]. However,
at variance with zebrafish embryos, the potent antisense morpholino
oligonucleotide (MO) gene targeting approach [27] is unfeasible in
zebrafish juveniles.

3. Tumor transplantation in zebrafish embryos

When compared to other vertebrate model systems, zebrafish
embryos offer many advantages, including ease of experimentation,
drug administration due to their permeability to small molecules, and
amenability to in vivo manipulation. Also, as stated above, zebrafish
embryo is suitable for transient gene inactivation via MO injection
[27]. Experimental evidences indicate that zebrafish embryo allows
disease-driven drug target identification and in vivo validation, thus
representing a powerful bioassay tool for small molecule testing and
dissection of biological pathways alternative to other vertebratemodels
[28]. Relevant to this point, zebrafish embryo is suitable for high-
throughput screening of chemical compounds using robotic platforms
[29]. Also, the use of gold nanobubbles for mechanical tumor ablation
[30] and of single-walled carbon nanotubes for the local delivery of
anti-angiogenic agents like thalidomide [31] indicates the possibility
to utilize zebrafish for investigating the efficacy of novel nanotechno-
logical approaches for cancer therapy.

On these bases, tumor transplantation in zebrafish embryos may
represent a simple and rapid approach to study tumor/endothelial
cell cross-talk during neovascularization, tumor cell invasion and
metastasis. Indeed, the optical transparency and ability to survive for
3–4 days without functioning circulation make the zebrafish embryo
highly amenable for tumor/vascular biology studies. External fertiliza-
tion allows the possibility to transplant tumor cells at specific develop-
mental stages starting from the blastula stage to 48 h post fertilization
(hpf) [32]. Also, because of the immaturity of the immune system in
zebrafish embryos, no xenograft rejection occurs at this stage with no
need for immune suppressing agents [14,33]. Many embryos can be
injected by a single operator in a few hours improving the validity of
statistical analysis. In a few days tumor cells transplanted into different
anatomical sites (e.g. blastodisk, yolk sac, hindbrain ventricle, and
bloodstream) can develop tumor masses, providing useful information
about the aggressiveness of the disease and the role of specific genes
in tumor dissemination and metastasis formation [34].

The injection of human melanoma cells in zebrafish embryos at the
blastula stage represented the first attempt to explore the potential
bidirectional interactions between cancer cells and embryonic stem
cell microenvironment [35]. The results indicate that developing
zebrafish can beused as a biosensor for tumor-derived signals. However,
grafting of tumor cells at this stage, well before vascular development,
results in their reprogramming toward a non-tumorigenic phenotype,
thus hampering any attempt to investigate tumor-driven vasculariza-
tion. At variance, injection of melanoma cells into the hindbrain ventri-
cle or yolk sac of 48 hpf embryos results in the formation of tumor
masses within 4 days [36]. Immunostaining analysis of the grafts
revealed the presence of blood vessels within the brain and abdominal
lesions, even though the high vascularity of the invaded regions did
not allow easy discrimination between developmental and tumor-
induced angiogenesis [36]. Together, these results underlie the possibility
to use zebrafish embryos to investigate the mechanisms and biological
implications of tumor/host cell cross-talk in cancer biology.
3.1. Tumor angiogenesis in zebrafish embryos

Angiogenesis, the process of new vessels formation from pre-
existing ones, plays a key role in tumor growth and metastasis [37].
Thus, the identification of anti-angiogenic drugs and of angiogenesis-
related targets has significant implications for the development of
anti-neoplastic therapies [38,39]. Various animal models have been
developed in rodents and in the chick embryo to investigate the angio-
genesis process and for the screening of pro- and anti-angiogenic com-
pounds, each with its own unique characteristics and disadvantages
[40]. To this respect, tumor cell engrafting in zebrafish embryos may
provide a valid alternative to other in vivo vertebrate animal models
[41,42].

The basic vascular plan of the developing zebrafish embryo shows
strong similarity to that of other vertebrates [43]. At the 13 somite-
stage, endothelial cell precursors migrating from the lateral mesoderm
originate the zebrafish vasculature and a single blood circulatory loop
is present at 24 hpf. Blood vessel development continues during the
subsequent days by angiogenic processes. In particular, angiogenesis
occurs in the formation of the intersegmental vessels (ISVs) of the
trunk that will sprout from the dorsal aorta at 20 h. Also, the
subintestinal vein vessels (SIVs) originate close to the duct of Cuvier
area at 48 hpf and will form a vascular plexus across most of the
dorsal–lateral aspect of the yolk ball during the next 24 h [43].

Previous studies had shown that developmental angiogenesis in the
zebrafish embryo, leading to the formation of the ISVs of the trunk [44]
and of the SIV plexus [45], represents a target for the screening of anti-
angiogenic molecules [46,47]. In these assays, low molecular weight
compounds dissolved in fish water are investigated for their impact
on the growth of new blood vessels driven by the complex network
of endogenous, developmentally regulated signals. More recently, a
zebrafish yolk membrane (ZFYM) assay has been proposed based on
the injection of an angiogenic growth factor [e.g. recombinant fibroblast
growth factor-2 (FGF2)] in the perivitelline space of zebrafish embryos
in the proximity of developing SIVs [48]. FGF2 induces a rapid and dose-
dependent angiogenic response from the SIV basket, characterized by
the growth of newly formed, alkaline phosphatase-positive blood
vessels [48]. The ZFYM assay differs from the previous zebrafish-based
angiogenesis assays since the angiogenic stimulus is represented by a
well-defined, topically delivered exogenous agent that leads to the
growth of ectopic blood vessels. This allows the screening of low and



1373C. Tobia et al. / Biochimica et Biophysica Acta 1832 (2013) 1371–1377
high molecular weight antagonists targeting a specific angiogenic
growth factor and/or its receptor(s) [48].

However, the study of vascular development and on the effects of
positive or negative modulators of the embryonic angiogenic process
may have important limitations when translated to cancer research.
Indeed, tumor-induced vessels show profound morpho-functional
alterations when compared to the normal vasculature [37]. This is
reflected by significant differences in gene expression profiling
between normal and tumor-derived endothelium [49,50]. Thus, models
based on tumor cell transplantation in zebrafish embryos appear to be
more suitable for studying the tumor-driven angiogenesis process and
itsmodulators. To this respect, we [41,51] and others [36,52] have char-
acterized the angiogenic response elicited by different mammalian
tumor cell lines transplanted into the perivitelline space of 24 hpf-old
or 48 hpf-old embryos in the proximity of the developing SIV plexus.
Pro-angiogenic factors released locally by the tumor graft affect the
normal developmental pattern of the SIVs by stimulating themigration
and growth of sprouting vessels towards the implant. One to two days
after tumor cell grafting, whole mount phosphatase alkaline staining
allows the macroscopic evaluation of the angiogenic response. The use
of transgenic zebrafish embryos, in which endothelial cells express
GFP under the control of endothelial-specific promoters ([53] and refer-
ences therein), allows the observation and time-lapse recording of
newly formed blood vessels in live embryos by epifluorescence micros-
copy andby in vivo confocalmicroscopy [41,51] (Fig. 1A). Also, quantum
dotsmay be used as labeling agents of the zebrafish embryo vasculature
for long-lasting intravital time-lapse studies [54]. This model allows the
possibility to investigate directly andwith high resolution the dynamics
of tumor neovascularization as the result of new sprouts from the host
vasculature and its origination from VEGFR2+ individual endothelial
cells. Vessel sprouts connect to each other to form endothelial loops
that are then accumulated into the new irregular tumor vasculature
[55].

The identification of genes essential for blood vessel formation is of
pivotal importance for the understanding of the angiogenesis process
and for the discovery of novel therapeutic targets. In zebrafish embryos,
MO injection induces a transient translational block in gene function
[27]. Gene inactivation by this approach is easy and fast (3–4 days)
when compared to the generation of knock-out mice (several months).
Also, the simultaneous injection of different MOs may allow the inacti-
vation of more than one gene at the same time. This represents a para-
mount advantage compared to any mammalian assay available and it
can be exploited for the identification of novel gene(s) involved in
tumor neovascularization. Accordingly, we have shown that MO-
induced inactivation of VE-cadherin [41] or calcitonin receptor-like receptor
[56] zebrafish gene orthologs results in a significant inhibition of the an-
giogenic process triggered by the tumor graft in zebrafish embryos.
Similarly, silencing of the LIM domain kinases LIMK1 and LIMK2 inhibits
neovascularization induced by human pancreatic tumor cells grafted in
zebrafish embryos [57].

As stated above, because of its permeability to small molecules,
zebrafish embryos can be used for the screening of novel angiostatic
drugs [28]. Accordingly, systemic exposure of live zebrafish embryos
to anti-angiogenic compounds dissolved in fishwater results in a signif-
icant inhibition of neovascularization triggered by various murine and
human tumor grafts (Table 1). Thus, tumor cell engrafting in zebrafish
embryo represents a short-term in vivo assay suitable for the identifica-
tion of tumor angiogenesis inhibitors.

3.2. Tumor invasiveness and metastasis in zebrafish embryos

The vast majority of all cancer deaths are caused by metastatic
expansion of primary tumors as a consequence of cancer cell dissem-
ination into the body mainly via the lymphatic and blood vessels [58].
The process that leads to the formation of cancer metastases consists
of a long series of sequential, interlinked and selective steps that
include local invasion, intravasation, arrest in distant capillaries,
extravasation, and colonization [59]. During this process, a permissive
microenvironment is crucial for metastasis development, underlying
the importance of tumor/host cell cross-talk in cancer progression
[60]. Also, because of theheterogeneity of cancer cells in primary tumors
and metastases, and because of the organ-specific microenvironment,
metastatic cells may become in many cases resistant to conventional
cancer therapies [59]. Moreover, preclinical studies have shown that
the benefits due to anti-angiogenic therapy with VEGF-pathway-
inhibitors might be offset by increased tumor invasiveness and aug-
mented metastatic potential [39,61]. Thus, a better understanding of
the pathogenesis of the metastatic process at systemic, cellular and
molecular levels is essential for the design of new,more efficacious ther-
apeutic strategies.

Due to its transparency, zebrafish embryo allows the study of the
behavior of tumor cells grafted in the embryo body or blood stream by
high resolution in vivo imaging techniques. In a first set of experiments,
Marques et al. [62] injected fluorescently labeled mouse mammary
epithelial cells transformed with oncogenic Ras into the yolk sac of
2 day-old zebrafish embryos. Using the transgenic zebrafish line
Tg(fli1:eGFP) that exhibits a green fluorescent vasculature, the local
invasion of tumor cells, their circulation into the blood stream, extrava-
sation and colonization at distant sites could be followed by time-lapse
microscopy. Also, explants from gastrointestinal primary human tumors
grafted into zebrafish embryos were able to induce micrometastasis
formation within 24 h after transplantation whereas non-tumor tissues
were ineffective. Furthermore, human tumor primary cells organo-
topically implanted in zebrafish liver showed invasiveness and meta-
static behavior [62]. Together, these results suggest that zebrafish
embryo may represent a model for the rapid analysis of the metastatic
behavior of primary human tumor specimens.

Zebrafish xenografts have been used to assess the role of pro-
metastatic miR-10a [63] as well as of Y-box binding protein 1 [32] and
ribosomal S6 kinase [64] genes and of the ATP-gated P2X7 receptor
[65] in tumor invasion. The mechanism of local invasion of tumor cells
was investigated further by Lal et al. [34] following the orthotopic injec-
tion of human glioblastoma cells into the brain of zebrafish embryos. By
6 days after injection, glioblastoma cells infiltrate the brain, elicit an
angiogenic response, and closely align along the abluminal surface of
brain blood vessels that may serve as migratory tracks for tumor cells
as it occurs in human primary tumors. Interestingly, glioblastoma cell
infiltration and vessel interaction were both attenuated by knockdown
of the calcium-activated protease calpain 2. In keeping with these
observations, grafting of a limited number of highly metastatic murine
melanoma B16F10 cells or human breast carcinoma MDA-231 cells
onto the inner surface of the pericardialmembrane of zebrafish embryos
at 48 hpf causes the co-option of host ventral aorta [66]. Then, tumor
cells move longitudinally along the aorta that is used as a migratory
track. Similarly, time-lapse imaging revealed that single tumor cells
injected into the trunk tissue migrate rapidly towards the nearest ISV,
thus underlining the tight cross-talk between tumor and endothelial
cells during the invasive phase of the metastatic process [66].

Vessel co-option is followed by an angiogenic response that leads
to neovessel formation. Hypoxia represents an important driving
force for tumor angiogenesis, mainly mediated by VEGF upregulation
via activation of the hypoxia inducible factor (HIF) signaling pathway
[67]. When metastatic murine and human cancer cells are injected
into the perivitelline cavity of 48 hpf zebrafish embryos maintained in
hypoxic water (7.5% air saturation), invasion into neighboring tissues,
dissemination, and metastasis of labeled tumor cells was greatly
enhanced when compared to cells injected under normoxic condi-
tions [68]. Consistent with increased tumor cell dissemination, hypoxia
significantly stimulated neovascularization and tortuosity of the tumor
vasculature via tumor cell-derived VEGF upregulation. Of note, VEGF
receptor blockade by sunitinib administration in the fish water or by
MO injection inhibited hypoxia-mediated pathological angiogenesis as



Fig. 1. Tumor xenografts in zebrafish embryo. Labeled murine melanoma DsRed-B16-BL6 cells were injected in circulation in the duct of Cuvier of transgenic tg(fli1:EGFP)y1

zebrafish embryos (80–100 cells/embryo) at 48 hpf. Then, embryos were analyzed by fluorescence microscopy. A) Neovascularization of tumor graft. Four days post injection
(dpi), a DsRed-B16-BL6 graft (in red) has induced a neovascular response from the SIV plexus (zebrafish endothelium in green) (a). Boxed area is shown at higher magnification
in panels b and c. The red channel image was omitted in panel c to highlight the newly formed microvascular network. B) Tumor cell arrest in embryo vasculature. Three hours post
injection (hpi) in the blood stream, DsRed-B16-BL6 cells arrest in ISVs and tail vascular plexus (a, the same cells are shown at higher magnification in panels b and c, respectively)
and in the brain vasculature (d). C) Extravascular micrometastases in zebrafish embryo. At 4 dpi, tumor cells have formed extravascular micrometastases in the tail vascular plexus
(a). Boxed area is shown at higher magnification in panels b and c. The red channel image was omitted in panel c to highlight the extracellular localization of tumor cells.
D) Neovascularization of tumor micrometastases. At 5 dpi, a DsRed-B16-BL6 micrometastasis has induced a neovascular response in the tail vascular plexus (a). The red channel
image was omitted in panel b to highlight the newly formed microvascular network.
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well as early dissemination of malignant cells, invasiveness and metas-
tasis [67].

As described above, thefirst studies about extravasation dynamics of
tumor cells in zebrafish were performed by Stoletov et al. in juvenile
animals [25]. More recently, the same group utilized 48 hpf zebrafish
embryos to visualize the extravasation of stable fluorescent highly
metastatic human tumor cells injected into the pericardium. By 3–5 h,
tumor cells enter the blood circulation and arrest in small vessels in
the head and tail regions. Then, extravasation occurs and involves the
modulation of tumor cell adhesion to the endotheliumwithout damage
of vascular bed during the extravasation process and the intravascular
migration of tumor cells along the luminal surface of blood vessels
independently from blood flow direction in a β1-integrin-dependent
manner [69].

In our laboratory, we have followed the fate of highly metastatic
murine melanoma B16-BL6 cells when injected directly into the
embryonic blood circulation in the ventral region of the duct of Cuvier
of transgenic tg(fli1:EGFP)y1 [70] zebrafish embryos at 48 hpf. To this
purpose, cells were stably transfected with DsRed fluorescent protein,
thus generating DsRed-B16-BL6 cells. In agreement with previous
observations [55,69], injected cells (80–100 cells/embryo) disseminate
throughout the whole embryo body within the blood circulation
(Fig. 1B). One day after injection, cells extravasate in different anatom-
ical sites, mainly in the tail region (Fig. 1C). This is followed during the



Table 1
Identification of anti-angiogenic agents by tumor cell engrafting in zebrafish embryo.

Tumor graft Anti-angiogenic agent References

Murine tumorigenic endothelial FGF2-T-MAE cells FGF receptor-1 inhibitor SU5402; VEGF receptor-2 inhibitor SU5416;
FGF2 inhibitor Ac-ARPCA-NH2 pentapeptide

[41,75]

Murine melanoma B16/F10 cells VEGF receptor-2 TK inhibitors SU5416 and SKLB1002 [55,76]
Human non-small cell lung carcinoma H1299 cells VEGF receptor TK inhibitor PTK787/ZK222584 [52]
Human glioma U87MG cells γ-Secretase inhibitors DAPT and compound E [77]
Murine melanoma B16/F10 cells and human breast cancer MDA-MB-231 cells PI3K inhibitor LY294002-loaded nanoparticles [78]
Human sarcoma HT1080 cells Thalidomide-loaded carbon nanotubes [31]
Cisplatin resistant-human ovarian carcinoma OVCA 433 cells MEK1/2 inhibitor UO126 [79]
Human chronic myelogenous leukemia K562 cells BCR-Abl1 inhibitor imatinib [80,81]
Human acute promyelocytic leukemia NB-4 cells PML-RARA inhibitor all-trans retinoic acid [80]
Human acute T cell leukemia Jurkat cells Cyclophosphamide and mafosfamide [81]
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next 3–4 days by the neovascularization (Fig. 1D) and growth (Fig. 2) of
tail micrometastases. Similar results were obtained by He et al. after
injection of different tumorigenic human and murine cell lines [47].
Again, vascular remodeling and angiogenesis play a pivotal role in
tumor growth and invasion in this model. Of note, myeloid cells appear
to control tumor invasion in a VEGF receptor-dependent manner by
conditioning the collagen matrix and forming a metastatic niche in
the caudal haematopoietic tissue of embryo tail [47].

3.3. Advantages and disadvantages of the tumor xenotransplantation
zebrafish embryo assays

When compared to other in vivo tumor assays, zebrafish embryo/
tumor xenograft models present several advantages. i) They allow the
in vivo delivery of a very limited number of cells, mimicking the initial
stages of tumor angiogenesis and metastasis. ii) Labeled tumor cells
(e.g. GFP-transduced, DsRed-transduced or fluorescent dye-loaded
cells) can be easily visualized following injection in transgenic zebrafish
lines that exhibit fluorescent vasculature like Tg(fli1:eGFP) animals.
Thus, analysis of the spatial/temporal relationship among tumor cells
and newly formed blood vessels can be performed by non-invasive
high-resolution imaging. iii) Several techniques can be applied within
the constraints of paraffinor gelatin embedding, including histochemistry
and immunohistochemistry. Electron microscopy can also be used in
combination with light microscopy. Moreover, whole mount in situ
hybridization and reverse transcriptase-polymerase chain reaction
analysiswith species-specific probes allow the study of gene expression
by grafted tumor cells and by the host under different experimental
conditions [41].
Fig. 2. Growth of tumor micrometastases in zebrafish embryo. Labelled murine melanoma
zebrafish embryos (80–100 cells/embryo) at 48 hpf. At different times after injection the e
cells arrested in the tail vascular plexus were photographed in the same embryo at 3 hpi (
how the few tumor cells arrested at 3 dpi have formed an evident micrometastasis at 5 dp
computerized image analysis (C). Data are the mean±SEM. of 29 embryos.
Zebrafish embryo/tumor xenograft models may represent a short-
term assay suitable for the identification of novel tumor angiogenesis
and/or metastasis inhibitors. Together with the rapid response, a
large number of embryos can be injected and maintained in 96
well-plates, thus allowing systemic in vivo treatment of the animals
with minimal amounts of compound. Therefore, dose–response
experiments can be easily performed and numerous compounds can
be tested in an effective manner. Relevant to this point, automated
bio-imaging assays, microinjection robotics and microfluidic systems
have been developed in zebrafish embryo that are applicable for angio-
genesis and cancer cell dissemination studies and for the screening of
anticancer drugs [29,71–74].

However, the metabolic fate of the drug (either in terms of its
activation or inactivation) may differ in zebrafish embryo in respect to
mammalian species. Also, zebrafish embryos are maintained at 28 °C.
This may not represent an optimal temperature for mammalian cell
growth andmetabolism, even thoughwe have observedmitotic figures
with no sign of apoptosis in grafted tumors throughout the whole
experimental period [41]. In this respect, the possibility to raise the
incubation temperature up to 35 °C with no apparent gross effects on
zebrafish development has been reported [36].

Species-specific microenvironmental differences may affect the
behavior of grafted mammalian tumor cells and the absence of certain
organs in fishes (including lung, mammary gland, and prostate) pre-
cludes the possibility to performorthotopic transplantation experiments
and to investigate tissue-specific mechanisms of tumor cell homing and
colonization in these organs. To this respect, a large supply of zebrafish
cancer cell lines, as well as of antibodies to zebrafish proteins, is sorely
needed.
DsRed-B16-BL6 cells were injected in the blood stream of transgenic tg(fli1:EGFP)y1

mbryos were analyzed by fluorescence microscopy in the tail region. DsRed-B16-BL6
A) and 5 dpi (B) and images were processed to highlight tumor cells (in black). Note
i (arrowheads). The relative rate of growth of tail micrometasases was quantified by

image of Fig.�2
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In summary,with its ownadvantages anddisadvantages,mammalian
tumor cell grafting in zebrafish embryos represents a novel tool for
investigating the tumor/endothelial cell cross-talk during tumor
growth, neovascularization and metastatic dissemination exploitable
for gene targeting and drug discovery in cancer.
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