Laboratory for Molecular Photonics


Department of Chemistry

University of Miami

Goal: The goal of this project was the identification of structural designs to switch fluorescence under optical control.


Results: The Laboratory of Molecular Photonics developed operating principles to switch the fluorescence of organic chromophores with either photocaged or photochromic components and characterized the spectroscopic signature of the resulting molecular constructs in liquid solutions, rigid matrices and biological samples.


Keywords: Fluorescence Isomerizations Molecular Switches Photoactivatable Fluorophores Photocages Photochromism


Selected Articles

  "Photoswitchable Fluorescent Dyads Incorporating BODIPY and [1,3]Oxazine

     Components": E. Deniz, S. Ray, M. Tomasulo, S. Impellizzeri, S. Sortino, F. M. Raymo, J. Phys. Chem. A, 2010, 114, 11567–11575

  "Photoactivatable Anthracenes": E. R. Thapaliya, B. Captain, F. M. Raymo, J. Org. Chem., 2014, 79, 3973–3981

  "Plasmonic Activation of a Fluorescent Carbazole–Oxazine Switch": J. Garcia-Amorós, S. Swaminathan, S. Sortino, F. M. Raymo, Chem. Eur. J., 2014, 20, 10276–10284

  "Autocatalytic Fluorescence Photoactivation": E. R. Thapaliya, S. Swaminathan, B. Captain and F. M. Raymo, J. Am. Chem. Soc., 2014, 136, 13798–13804


Selected Reviews

  "Fluorescence Modulation with Photochromic Switches": F. M. Raymo, M. Tomasulo, J. Phys. Chem. A, 2005, 109, 7343–7352

 "Electron and Energy Transfer Modulation with Photochromic Switches": F. M. Raymo, M. Tomasulo, Chem. Soc. Rev., 2005, 34, 327–336

The photoinduced cleavage of a diketone bridge activates anthracene fluorescence to allow energy transfer from the product to the reactant and ensure the autocatalytic generation of the former.